EL DORADO UNION HIGH SCHOOL DISTRICT Educational Services

Course of Study Information Page

Course Title: Physics A (#328)

Rationale: After high school the top 25% of students are university bound, the bottom 25% move into service or vocational jobs, and the middle 50% have little or no direction. It is this "middle" student population that is lacking our attention. Physics A is a course designed to prepare that middle 50% of students more effectively for technical careers. The rapid changes in modern technology require training that is applicable to more than a single job. Technicians must understand the mechanical, fluid, electrical, and thermal principles on which modern equipment operates. If a technician understands the principles on which their current work is based, they can apply those principles to new situations.

Course Description: Year one of a two year course that is both academically rigorous and practical for students planning technical careers. Topics include force, energy, electricity, and optics and the mathematics required to support these concepts.

Length of Course:	One Year
Grade Level:	Grades 10-12
Credit: Number of units: 5 per semester ⊠ Meets graduation requirements ⊠ Request for UC "a-f" requirements ⊠ College Prep ⊠ Elective □ Vocational	
Prerequisites:	Algebra A minimum, Algebra 1 suggested
Department(s):	Science
District Sites:	EDHS
Board of Trustees Adoption Date:	February 14, 1995
Textbook(s)/Instructional Materials:	<i>Principles of Technology</i> (teacher's guide only), 1987, 1990, Center of Occupational Research and Development, Waco, Texas
Date Adopted by the Board of Trustees:	May 23, 1995

Department: Science Course Title: Physics A

Course Goals:	Principles of Technology is based on the Unified Technical Concepts course developed by the Center for Occupational Research and Development, Waco, Texas. Each of the 14 units deals with one principle as it applies in the four energy systems; mechanical, fluid, thermal, and electrical that make up both simple and complex technological devices and equipment. The units also cover the mathematics needed to understand and apply the principles. The units will be presented over two years.		
Student Performance Objectives:	Please see attached sheet.		
Instructional Units:	The following chart show program: <u>First Year Units</u> Force Work Rate Resistance Energy Power Force Transformers	vs the sequence for the two year <u>Second Year Units</u> Momentum Waves and vibrations Energy Converters Transducers Radiation Optical Systems Time Constants	

Department: Science Course Title: Physics A

UNIT #1: Work

	OBJECTIVES	ACTIVITIES
The	e student will:	
1.	Describe work in mechanical, fluid and electrical systems.	1. The unit begins with an overview of the 3 systems with work as the unifying concept.
2.	Describe how work in mechanical, fluid and electrical systems involves the presence of force and movement.	2. In the laboratory, we investigate how work is done by a pulley system, a hydraulic ram, and an electric motor.
3.	Identify correct SI and English units for work on mechanical, fluid and electrical systems.	 Calculations are done in units of Joules, ft-lbs, N/m², lbs./in², Voltage x coulombs, Amperes, etc.
4.	Identify the effects of work done in mechanical, fluid, and electrical systems.	4. Laboratory measurement of systems in motion, doing work.
5.	Measure work in mechanical, fluid, and electrical systems.	

Department: Science Course Title: Physics A

<u>UNIT # 2</u>: Resistance

OBJECTIVES		ACTIVITIES	
The student will:			
1.	Describe how resistance affects mechanical, fluid, electrical, and thermal systems.	1.	The unit begins with an overview of resistance in mechanical, fluid, electrical and thermal systems.
2.	Explain how resistance in each energy system relates to the unifying principle of a "force" divided by a rate.	2.	In the laboratory, friction, (mechanical resistance) viscosity, (fluid friction) electrical resistance and thermal conductivity are investigated.
3.	Identify correct SI and English units for resistance in each energy system.	3.	The mathematical expressions necessary to the study of resistance are covered in lecture/discussion and guided practice.
4.	Identify the positive and negative effects of resistance in each energy system.	4.	Measurements of the resistance to the flow of energy are made on working systems.
5.	Identify workplace applications where technicians measure or control resistance.		
6.	Measure resistance in mechanical, fluid, electrical and thermal energy systems.		

Department: Science Course Title: Physics A

UNIT # 3: Force Transformers

	OBJECTIVES		ACTIVITIES
The	e student will:		
1.	Describe force transformers in general. Describe force transformers in mechanical, fluid and electrical systems.	1.	The unit begins with an overview of force transformers in mechanical, fluid and electrical systems.
2.	Explain why force transformers form a unifying principle in mechanical, fluid, and electrical systems.	2.	In the laboratory, we investigate mechanical advantage in mechanical and fluid systems and the function of a transformer in electrical systems.
3.	List examples of force transformers in mechanical, fluid, and electrical systems.	3.	The mathematical calculations of mechanical advantage and the efficiencies of machine and electrical systems are discussed and reinforced by guided practice and lab work.
		4.	Laboratory measurement of the change in force and efficiencies of working systems.

Department: Science Course Title: Physics A

UNIT # 4: Rate

	OBJECTIVES		ACTIVITIES
The	e student will:		
1.	Describe rate in terms of mechanical, fluid, electrical and thermal systems.	1.	The unit begins with an overview of rate in mechanical, fluid, electrical and thermal systems.
2.	Identify appropriate SI and English units for rate in all four energy systems.	2.	In the laboratory, translational mechanical rate is measured and angular rate is measured with a stroboscope. Techniques for measuring the rates in fluid and gas systems are employed and an oscilloscope is used to measure frequency and voltage in electrical systems.
3.	Measure rate in mechanical, fluid, electrical and thermal systems.	3.	Mathematical calculations are used to solve problems involving rate in the four energy systems.
4.	Identify workplace applications where rate is measured and or controlled.		

Department: Science Course Title: Physics A

UNIT # 5: Force

OBJECTIVES		ACTIV	ITIES
The	e student will:		
1.	Apply the concept force in terms of linear displacement (translational) and angular displacement (torque).		with an overview of ical, fluid, electrical tems.
2.	Give examples of complex technological devices where force must be controlled, measured or applied.	torque, translation force in hydrauli	y, we investigate onal drive systems, c and pneumatic oltage in electrical
3.	Describe what force, pressure, voltage and temperature difference have in common.		are described and veloped in the lab
4.	Predict what happens to an object when forces on it are balanced and when forces on it are unbalanced.	 The mathematic torque, force, pr temperature cor voltage are cove reinforced in lab 	essure, oversions and ered in lecture and
5.	Measure force in mechanical, fluid, electrical, and thermal systems.	5. Laboratory mea analogues in wo	surement of force orking systems.
6.	List occupations that require technicians to measure, control, or otherwise deal with force in complex devices.		

Department: Science Course Title: Physics A

UNIT # 6: Power

OBJECTIVES		ACTIVITIES	
The	The student will:		
1.	Describe what is meant by power in general and relate that concept to mechanical, fluid, electrical and thermal systems.	1.	The unit begins with an overview of power in mechanical, fluid, electrical and thermal systems.
2.	Explain how thermal power and thermal rate are the same.	2.	In the laboratory, we measure translational and rotational mechanical power, power in hydraulic and pneumatic systems, and power in electrical systems.
3.	Explain how power in each energy system relates to the unifying principle of work divided by time.	3.	Guided practice in problem solving in the calculation of power in mechanical, fluid and electrical systems.
4.	Explain why power also can be described in terms of a "force" multiplied by a rate for mechanical, fluid and electrical systems.	4.	Research project in which the student chooses a vocation which involves the production of power or the management of power and produces a paper which is presented to the class.
5.	Identify technical workplace applications where technicians measure or control power.		

Department: Science Course Title: Physics A

UNIT # 7: Energy

	OBJECTIVES	ACTIVITIES	
The	e student will:		
1.	Describe the nature of energy in mechanical, fluid, electrical and thermal systems.	 The unit begins with an overview mechanical, fluid, electrical and thermal systems with energy as th unifying concept. 	
2.	Describe what's meant by "potential energy."	 In the laboratory, the potential energy of a rotating flywheel, (mechanical) compressed gasses (fluids) capacitors, (electrical) and the mechanical equivalent of heat are studied. 	
3.	Describe what's meant by "kinetic energy."	 Mathematical equivalences for energy and work are used to solve problems. 	Э
4.	Describe the relationship between potential energy, kinetic energy and heat energy in the conservation of energy law.	 Laboratory investigations of the control systems for energy systems. 	
5.	Describe the relationship between work and energy.		
6.	Identify appropriate SI and English units for energy in each system.		
7.	Measure energy in each system.		
8.	Identify workplace applications where technicians measure or control energy.		